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Golomb and Jerome’s framework is modified and extended. The new framework
is more general since it also handles interpolants which are not allowed to “slide”
at the nodes. The space of interpolants of variable length is shown to be a smooth
manifold. If the length is fixed, and there are no nodes, then the space of inter-
polants is a manifold. When there is at least one node, and at least one node is not
on the line segment between the endpoints, then the space of interpolants of fixed
length is a smooth manifold. Sufficient conditions are given which ensure the space
of interpolants continues to be a smooth manifold in the presence of additional
constraints such as clamping and pinning. A new fundamental finite-dimensional
equation is derived. When it is solved it yields all nonlinear splines, and every non-
linear spline appears in this way. An important feature is that the same symbolic
equation is used for all possible combinations of the constraints considered. It is
shown how to take the solutions of the fundamental equation and use them to
express the corresponding nonlinear splines in terms of a pair of elliptic functions.
An inequality is derived that specifies which elliptic function appears along each
section of the spline. The nonlinear splines are in a unified way shown to be C? for
all possible combinations of the constraints considered.  © 1996 Academic Press, Inc.

0. INTRODUCTION

0.1. Motivation and QOverview

0.1.1. Elastic Energy

When a thin beam or wire is bent it stores elastic energy. According to
the Euler—Bernoulli model, this elastic energy is proportional to the total
squared curvature. It is a classical problem to find the “equilibria” of
the elastic energy. A “natural” constraint is to assume the length fixed.
A different constraint is to fix the locations of the endpoints. This is called
pinning. A third constraint is to fix the tangent directions at the endpoints.
This is known as clamping at the endpoints.
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0.1.2. Interpolation and Sliding at the Nodes

In the context of splines one also considers the additional constraint of
requiring the wire to pass through a finite number of given points in some
specific order. The points are called nodes when considered as points along
the wire. Arbitrary curves satisfying this kind of constraint are called inter-
polants. There are two ways the constraint can be imposed. The first
possibility is that a node is required to appear at a spot already marked on
the wire before bending. The other possibility is that the node can be
anywhere along the wire, as long as the nodes appear in the prescribed
order along the wire. The second possibility corresponds (“physically”) to
the ability of the wire to slide at the node.

0.1.3. Discontinuous Second Derivative when Clamping at the Nodes

Given any node it is possible to fix the tangent direction at the node. The
expressions given in Section 3.5 reveal a discontinuity which disappears
only if the clamping is at the endpoints. A consequence of this is the failure
of an equilibrium to have continuous second derivatives (unless the
equilibrium is still an equilibrium when the clamping at the nodes are
removed). Since we like to prove that the equilibria have continuous
second derivatives, clamping is only assumed at one or both of the end-
points, or not at all.

0.1.4. Critical Points

In our framework the concept of equilibrium is replaced by the notion
of critical point. A critical point is a point where a gradient vector field
vanishes. It follows that a critical point need not correspond to an
extremum. This is significant for us since there need not exist an extremum.
When the length is not fixed, and the straight line segment is not admissible,
there is no minimum of the total squared curvature; see Section 2.6.

0.1.5. Equilibria in the Calculus of Variations

It is common to use collections of necessary conditions to define the
equilibria; see, for instance, [5]. In variational problems the Euler—
Lagrange equation is a necessary condition, however, depending on the
constraints there may also be “other” necessary conditions. In fact, it may
not be obvious what the “other” necessary conditions are, nor that all
necessary conditions have been considered. (A “classic” example which
illustrates these issues is the “brachistochrone” problem with variable
endpoints. The problem is to find the path of minimal time to be followed
by an object which due to gravity is sliding without friction along the path.
Assume the path must start somewhere along some given curve and end
somewhere along a different given curve.)
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0.1.6. Avoiding the Issue of Necessary Conditions

As the last paragraph suggests it is legitimate to ask (when attempting
to solve a variational problem) if all necessary conditions have been con-
sidered. In our framework this question never arises. From our point of
view there is a functional with a domain which is an infinite dimensional
open manifold. Associated with the functional is a gradient vector field
defined on the tangent spaces of the infinite dimensional manifold. The
constraints single out subsets of the domain which for now we assume are
smooth manifolds. The gradient vector field is projected onto the tangent
spaces. The problem is to find all points where the projection vanishes.

0.1.7. The Variational Problem Turned into a Computation

It follows that if the subsets corresponding to the constraints are shown
to be smooth manifolds, then the variational problem is completely com-
putational. The gradient must be computed and its projection determined.
Of course, one likes to give the points where the projected vector field
vanishes as explicitly as possible. It is important to employ a process which
does not introduce nor hide solutions. The computational process in the
proof of Theorem 4.1 exhibits this feature. We are very careful to include
every single “candidate,” so none is missed. Once the “survivors” have been
found, each is tested explicitly to show that the projected gradient vector
field indeed vanishes.

0.2. New Contributions

We now begin to describe in nontechnical terms what is new in this
paper. Many of the details are considered in Section 1, where a comparison
is made with [5].

0.2.1. The Issue of Variable Length

It is perfectly reasonable to ask why this “classical” Euler—Bernoulli
problem warrants yet another investigation. One of the questions, which
seemed beyond the earlier methods employed, concerns the existence of
critical points when the length is not fixed but clamping is imposed at both
endpoints. Even when there are no nodes the answer turns out to be quite
complicated. In [16] it is shown that there are either no critical points, a
finite number of critical points, or a countably infinite number of critical
points.

0.2.2. A New Example that Illustrates the Possible Complexity
of the Collection of Critical Points

In Section 1.1.5 our main theorem 4.1 is specialized to the case with
clamping at only one endpoint, and this offers another example of this
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cnx_] := JacobiCN[x,1/2]

sn[x_] := JacobiSN([x,1/2]

am[x_ ] := JacobiAmplitude[x,1/2]

kc := EllipticK([1/2]

ec := EllipticE[1/2}

e[x_] := EllipticE[am[x],1/2]

mix ] := ke (2 e[x] - x)

nl[x_ ] := 2 ArcSin[sn[x]/Sqrt[2]]

fix_] := ArcTan[Sqrt[2] kc cn[x]/(m[x] + Pi/2)] + n[x]

Plot[{(f[x],Pi/2},{x,0,12 kc},
PlotStyle->Thickness[0.00001]]
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FIGURE 1
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kind. As these examples illustrate, one cannot hope to find the critical
points explicitly except in very special cases. The best one can do is to
express the critical points in terms of known functions and a finite number
of unknown parameters. The parameters are required to satisfy a system of
equations and if this system is solved then the critical points are completely
determined. In Fig. 1. each intersection between the line 7/2 and the graph
gives a different value of one particular parameter, and thus a different
critical point. Figure 1 is discussed in detail in Section 1.1.5.

0.2.3. A New Ambient Space Solves the Problem: Pinning at the Nodes

For the time being think of nonlinear splines as critical points of the
total squared curvature in the space of interpolants (the precise definition
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is given in Section 2.5). We introduce a new ambient space containing all
sufficiently smooth curves. This space is a Cartesian product of three
factors. The first two factors have been used before, by Langer and Singer
in [10] and by the author in [14]. The third factor is new. Its purpose is
to “track” the nodes and facilitate the solution of the case where no sliding
is allowed at the nodes. Note that this case is avoided in the comprehensive

paper [5].
0.2.4. Properties of Smooth Infinite Dimensional Manifolds

The ambient space is not quite a linear space but an open subset of a
linear space. Curves which satisfy given constraints appear as subsets of the
ambient space. The constraints, fixing length, clamping and pinning,
“generically” produce subsets that are smooth submanifolds of the ambient
space. Sufficient conditions are given in Proposition 3.2. A smooth sub-
manifold means that there is a well-defined tangent space at each point of
the subset. For us the tangent spaces are infinite dimensional but the
corresponding normal spaces are finite dimensional. All normal spaces have
the same dimension. There are no singularities such as cusps or self-
intersections. When a smooth vector field on the ambient space is projected
onto the tangent spaces of the submanifold, the resulting vector field is still
smooth.

0.2.5. No Critical Point is Overlooked

The total square curvature is a functional defined on the ambient space.
A crucial step is to compute the projection of its gradient vector field onto
the tangent spaces of the constrained set. The ultimate goal is of course to
determine all the points where the resulting tangent vector field vanishes.
Since we insist on finding all critical points, the analysis of the well-known
Euler-Lagrange equation is here extended to include the proof that all
initial value problems can be solved using one or the other of the Jacobi
elliptic functions c¢n and dn; see Proposition 3.3. The same issue is resolved
in the special case ¢ =0 in [16]. There it is shown that ¢n alone solve all
initial value problems when ¢ =0. Note that Proposition 3.3 also contains
an inequality, which in terms of the data of the problem distinguishes
between the cases solved by cn from the ones solved by dn. A related,
but different, criterion is given by Brunnett in [2, Theorem 2, p. 47].
Analogous results are given in [ 3, Theorem 4, p. 6]. In the case ¢ =0 see
[4, Theorem 1.3.2, p. 9].

0.2.6. The Fundamental Finite Dimensional Equation

When all is put together, the main result, Theorem 4.1, presents a system
of equations with the following properties. All constraints considered can
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be resolved using one and the same system of symbolic equations. Note
that there are three kinds of symbols in this system. First there are the
parameters associated with the solutions of the Euler-Lagrange equation:
/; as function names; p;, ¢, as moduli; and «;, f§;, as parameters in the
arguments of the functions. Next there are the “multipliers” belonging to
the constraints: the complex numbers /; for the nodes as points in the
plane; the real numbers o, for the nodes as points on the nonlinear spline;
and the real numbers u for the length; x,, x«, for clamping. Finally there
are the symbols associated with the data of the problem: the complex
numbers g;=P,— P, , for the location of the nodes in thf plane; the real
numbers §; for the location of the nodes along the wire; L for the length;
and 6, 0, for the clamping angles.

0.2.7. How the Fundamental Equation is used

If a constraint is imposed, then its corresponding multiplier is unknown
and the value of the constrained quantity is known. Conversely, if a con-
straint is missing then the multiplier is zero but the constrained quantity is
now unknown. It is shown in Section 5 how to use the same system of
equations in order to handle all combinations of constraints. The symbolic
relationships are fixed for all combinations of the constraints. When the
constraints are changed there is a transition between symbols that have a
known value and the symbols that are unknown. A key to the analysis of
nonlinear splines is to understand this fundamental system of equations.

0.2.8. Unification Made Possible by the Use of the New Ambient Space

The unification of the treatment of nonlinear splines subject to different
constraints is successful primarily because we use a single ambient
manifold. Note that every nonlinear spline must correspond to a solution
of the fundamental system of equations. Conversely, if there is a solution
of the fundamental system of equations and this solution is compatible with
the restrictions imposed by the inequality of Theorem 4.1, then the corre-
sponding critical point must be a nonlinear spline satisfying all the
constraints imposed.

0.2.9. Previous Cases as Special Cases of Theorem 4.1

Theorem 4.1 shows how the infinite dimensional problem of finding all
the nonlinear splines, in the space of all interpolants subject to some
specific set of constraints, is reduced to a finite dimensional problem. One
cannot in general expect further reductions. There is, however, one case
which is completely explicit. Assume that there are no nodes (so n =0), no
length constraint and no clamping. The fundamental system of equations
of Theorem 4.1 in this case simplifies and can be completely solved. If
clamping is imposed at one endpoint then the system simplifies somewhat,
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but not to the point where it can be completely solved. Recall Fig. 1 and
the intersections of the two graphs. It is too much to ask to have all points
of intersection explicitly. (An analysis of the asymptotic behavior shows
there is a countably infinite number of solutions.) The first of these
cases is considered in [ 16]. Both cases are now very special subcases of
Theorem 4.1.

0.3. Organization
The paper is organized as follows:

0. Introduction.
Background.
The setup.

1
2
3. Derivatives, gradients, manifolds and the differential equation.
4. The fundamental equation and all constraints imposed.

5

Not all constraints imposed.

Some of this work has been presented at the NIU classical analysis
seminar and the author would like to take this opportunity to thank all the
participants. The author sincerely appreciates all the input given to him by
Carl de Boor. A special acknowledgement also goes to David A. Singer for
a valuable suggestion and, as always, inspiring the author in a time of
despair. Last but not least, I hope I can be as strong and courageous as
Dorothy Leah Johnson, my favorite kidney donor.

1. BACKGROUND

1.1. Relationship to the Work by Golomb and Jerome

1.1.1. Definition and Admissible Variations

We now sketch in more detail how this paper relates to the comprehen-
sive paper [5] by Golomb and Jerome. The first difference appears in the
definition of a nonlinear spline. Golomb and Jerome use a variational
definition, which in their abstract is given by 6 [} «°(s) ds=0, in terms of
the total squared curvature. To be precise one should also specify the
domain over which the variation takes place. This is particularly important
when the imposition of constraints makes the domain nonaffine in which
case one can proceed easily only if a tangent space can be shown to exist
at all points of interest in the domain. We do give conditions which
guarantee such existence.
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1.1.2. Difficulties with Variable Length

If the length of the curve is variable, a certain technical difficulty arises
when curves are parametrized according to arclength (note the variable
upper limit in & § x*(s) ds=0.) There is no single fixed function space on
which to carry out the analysis. To circumvent this difficulty we write the
domain as a product of a function space and a factor representing the
length. As mentioned in Section 0.2.3, this technique has been used before.

The use of variational methods in search of critical points in a space of
curves of arbitrary length is extensive. The total squared curvature func-
tional has been used to find geodesics. See [12-14] for the geodesic
problem and [15] for a survey.

1.1.3. Allowing Pinning

If the total length is fixed, pinning corresponds to fixing the length
between consecutive nodes. We introduce a new factor representing the
parameters associated with the nodes. For us pinning is allowed, but not
required. If the total length is variable, then pinning at a node fixes the
ratio between the length “before” the node and the length “after” the node.
Neither kind of pinning is considered in [5].

1.1.4. Existence of Nonlinear Splines with No Length Restrictions

We quote from [ 5, p. 4221, “the existence of such extremals interpolating
n points in general position, and whether they are local minima or not,
remains an open question ....” Our main result shows that the answer to
this question is determined by whether the fundamental finite-dimensional
equation has solutions or not. Every solution corresponds to a nonlinear
spline and conversely. Examples show that anything can happen. There
may be no solutions, any finite number of solutions, or an infinite number
of solutions. These possibilities occur already for curves with no nodes; see
[16]. To answer the open question one must find all solutions of the
fundamental equation. Only in very special cases can such a solution be
given explicitly. As the next example illustrates, explicit solutions are not
expected in general. In Section 1.1.6 we discuss local minima.

1.1.5. A Simple Example Illustrating Existence

Consider all planar curves of any length starting at (0, 0) and ending at
(1,0). Assume the tangent direction at (1,0) is given as an angle with
respect to the x-axis. What is the range of angles so that there are corre-
sponding nonlinear splines, starting at (0, 0) ending at (1, 0), such that
their tangent direction at (1, 0) agrees with the given angle? Note that the
tangent direction at the origin is not fixed, so this problem is different than
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the ones considered in [ 16, 2]. Also, recall Section 0.1.5 and the example
of the difficulties associated with variable endpoints.

An application of Theorem 4.1 yields the following; see Section 5.4. The
range is approximately [ —1.7378, 1.7378] in radians. Note that 1.7 is
bigger than n/2. Moreover, it follows that if the prescribed angle is 1.8
radians (say), then there are no nonlinear splines satisfying the boundary
conditions.

If the angle is in [ —1.7378, 1.7378], but not in [ —x/2, n/2], then there
is only a finite positive number of nonlinear splines satisfying the boundary
conditions. If the prescribed angle is in [ —n/2, 7/2], then there is a coun-
tably infinite number of nonlinear splines. Figure 1 illustrates the case 7/2.
An analysis of the asymptotic behavior shows that the local maxima in
Fig. 1 reach above 7/2 a countably infinite number of times. The limiting
value of the local maxima is 7/2.

1.1.6. Four of the Corresponding Critical Curves

Figure 2 illustrates the “first” four critical curves. Two of the curves have
vertical tangent direction at the origin. Both are critical without the
tangential constraint at (1,0), and both are saddle points of the total
squared curvature for the following reason. Add two straight line segments
at both endpoints and make sure they are tangent to the curve (the result
is a sufficiently smooth curve). The constraints are still satisfied and the
total squared curvature is unchanged. The new curve is not a member of
the countable list of critical points given in [16]. It follows that the
gradient is not zero in the space without tangential constraints. The new
curve is also in the space of curves subject to the tangential constraint. It
is again not a member of the “new” countable list of critical points. By
shortening the two line segments, one gets a sequence of curves arbitrarily
close to the critical curve such that at each curve the gradient is not zero.
If one follows the negative gradient trajectory through any one of these
curves, new curves with lower total squared curvature are found instantly.
Conversely, if the straight line segment added at the origin is replaced by
a piece shaped like a question mark, one gets a curve with larger total
squared curvature. Again it is possible to adjust the shape of the question
mark to get a sequence approaching the longer spline with strictly larger
total squared curvature.

The first part of the reasoning above is not applicable to the other pair
of critical curves. Note that the straight line segment between (0, 0) and
(1,0) is not admissible when the angular constraint is imposed. Without
the constraint the line segment is a global minimum. If the angular con-
straint is zero rather than 7/2, then the line segment is admissible. As the
constrained angle is increased above zero, the critical point initially corre-
sponding to the line segment must “move” somewhere. We suspect the
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te = Pi/2

lc := ac Sin[tc - nlac - kell}/(Sgrt[2] cn[ac - kc])

lc := ac Cosl[tc - n[ac - kcll/(2 (elac - kel + ec) - ac)

enc := ac/lc (2 (elac - kc] + ec) - ac)

gls_] := lc/ac (2 (elac s - ke¢] + ec) - ac 8 - I Sqgrt(2] *
cnl[ac 8 - ke¢]) Exp[ I (tc - nl[ac - kel)]

ac = FindRoot[f[x] == tc, {x,0,1}1[[1,2]]1 + ke
ac = FindRoot[f[x] == tc, {x,2,3}1[[1,2]1] + ke
ac = FindRoot[f([x] == tc, (x,8,9}1[[1,2]] + kc
ac = FindRoot[fix] == tc, {x,9,10}1[[1,2]] + k¢

ParametricPlot [ (Re [gls]l],Im[gls]]},{s,0,1},
PlotStyle->Thickness[0.00001],
AspectRatio->Automatic]

FIGURE 2
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shortest curve in Fig. 2. is the “new” critical point when the angular con-
straint is increased all the way to =/2. Based on this we conjecture that
the shortest curve is a local minimum. We show in Section 2.6 that the
infimum of the total squared curvature is zero, so it follows that the
shortest curve cannot be a global minimum.

The figures were produced with the help of Mathematica. The code is
given in Fig. 1 and Fig. 2. The code is completely symbolic except for the
numerical “FindRoot” function. The same formulas work for different con-
strained angles by changing “tc = Pi/2.” Note how the curve is expressed as
a complex function. The length can be computed using the formula for “lc.”
For the energy use the formula for “enc.” The lengths are 1.406996, 2.18844,
2.10987, and 2.18844, where the second and the fourth have a vertical
tangent direction at both endpoints. The corresponding energies are
2.64508, 2.87108, 25.8139, and 25.8397.

1.2. Constraints and Manifolds of Interpolants

1.2.1. Sufficient Conditions That Guarantee Subsets Are Manifolds

Let n be a nonnegative integer. Suppose P, .., P,,, are n+2, not
necessarily distinct points in the plane. It is shown how to represent inter-
polators in a way that facilitates the analysis associated with additional
constraints. Examples of such constraints include: fixing the total length of
the curve, pinning, clamping. If a curve is pinned at the nodes P; and P, ,,
then the length of the curve between the two nodes is in a fixed proportion
of the total length. If a curve is clamped at P,, then the tangent direction
of the curve is fixed at P;.

The space of interpolators is shown to be a smooth manifold. The subset
of interpolators of fixed length is also a smooth manifold, provided the P;’s
are not all on the same line. If the length is fixed and the interpolator is
pinned at all nodes P,, then the corresponding subset of interpolators is a
smooth manifold, provided the pinning is such that the length of the inter-
polator between any P;, P, , exceeds the distance |P;,, — P;|. If the length
is not fixed and the interpolator is pinned at all nodes, then the associated
subset is a smooth manifold, provided the ratio between the length of the
interpolator from P; to P,,, and the distance |P;,, — P,| is different for
each i. It is also shown that if the interpolator is clamped at P, and/or
P, . |, then in each of the above cases the resulting subset is still a smooth
manifold.

1.2.2. Necessary Conditions Are Not Known

When none of the sufficient conditions are satisfied, it is an open ques-
tion whether the subset is a manifold or not. The proof of Proposition 3.2
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shows that the subset of curves satisfying the constraints is an intersection
of manifolds, where the intersection is not transversal. Such an intersection
can yield a manifold of the “right” dimension. A finite dimensional example
is given by the intersection of the “sheets” y =x? and y= —x? in three-
dimensional space. In general the subset need not be a manifold. For
instance, cusps can be created, z=x>—y* and z=0, as well as “self-inter-
sections,” z=x?—y? and z=0.

1.3. Existence of Minimizers

If the length is fixed, there always exists a nonlinear spline satisfying the
constraints; see [ 7, 8]. When the length is variable, we show in Section 2.6
why the total squared curvature is not globally minimized whenever the
straight line segment does not satisfy the constraints; see also [1].

If a positive constant times the length is added to the functional, then
there is a global minimizer. This constant is the tension parameter used by
Brunnett in [2]. As the examples in Section 2.6 show, the functional con-
sidered in [2] has no global minimum when the tension parameter is not
positive. There may be no solutions to the variational problem; see
Theorem 4.1 in [16] for precise conditions in the case of no tension. It is
not difficult to modify Theorem 4.1 so that it includes the tension
parameter.

1.4. Existence of Multipliers

A different issue concerns the application of Lagrange’s multiplier rule.
The existence of multipliers is by no means guaranteed. The Lagrange mul-
tiplier theorem requires a complete function space. In this paper we modify
and expand the approach used by Golomb and Jerome in [5]. The domain
consists of a product of factors where the infinite dimensional factor is the
largest possible Sobolev space on which the total squared curvature is still
defined. A Hilbert space structure is used to project gradients onto the
tangent spaces and the normal spaces. At the nonlinear splines the projec-
tion of the gradient of the total squared curvature vanishes. This definition
includes local minimizers among others. The normal space is spanned by
gradients associated with the constraints. The normal component of the
gradient of the total squared curvature is expressed as a linear combination
of the spanning vectors. The associated scalars are the Lagrange multipliers.

1.5. A Unified Reduction to a Finite Dimensional Problem

If a nonlinear spline is sought from scratch, an infinite dimensional
problem must be solved. The main contribution of this paper is to reduce
the infinite dimensional problem to a finite dimensional problem. This
reduction is done in a unified way for all constraints. As discussed in
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Sections 0.2.6-0.2.8, the fundamental finite dimensional equation is sym-
bolically the same for any combination of the constraints considered. All
nonlinear splines must correspond to solutions of the fundamental equation.
Conversely, every solution corresponds to a nonlinear spline. Note that the
variational problem is given a firm foundation. Nonlinear splines are
defined geometrically as points in an infinite dimensional space where a
certain vector field vanishes. The question regarding the existence of non-
linear splines is reduced to a question about existence of solutions to a
finite dimensional equation. The geometric approach also reveals why the
nonlinear splines are C? or better, no matter which constraints are
imposed. This unified treatment incorporates all cases considered in [2, 5,
6, 8,9, 11].

1.6. Real Sobolev Spaces, Complex Numbers

The desire to deal with all combinations of constraints causes serious
technical and notational difficulties. The use of complex numbers to repre-
sent the curves, and also some of the multipliers, alleviates some of the
difficulties. Note that the Sobolev space we use is a real vector space, so
this use of the complex numbers is not standard; see also [16].

1.7. No Solution Is Missed

To reduce the problems from infinite to finite dimensions a well-known
ordinary differential equation must be solved. It is easy to check that the
Jacobi elliptic functions cn and dn satisfy the differential equation. It is
considerably more difficult to prove that there are no other functions that
satisfy the differential equation. Proposition 3.3 contains this result and
gives an inequality that distinguishes between the two possibilities. Without
this result it is not obvious how to prove that every nonlinear spline is
given by a solution of the finite dimensional fundamental equation. As
mentioned in 0.2.5, Brunnett has resolved the same issue in a slightly dif-
ferent context.

2. THE SETUP

2.1. Interpolants

Consider the standard Euclidean plane and suppose P, .., P, are
n+ 2 given points. The integer n is nonnegative and the points P, are not
necessarily distinct. A curve passing through the points P;, in the given
order, is called an interpolant. The initial point of the curve is thus P,, and
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the curve ends at P, ,. The n points P, through P, are referred to as
nodes. Note that curves are not assumed to be representable as graphs of
real-valued functions on some interval, so in particular, an interpolant may
intersect itself. We assume the curves are rectifiable so the length is defined.
The length is not constrained and can be any positive real number.

2.2. Functionals and Domains

For sufficiently smooth curves 7, let k¥ be the curvature. The Euler—
Bernoulli elastic energy is given by F(y) := |, x> Note that F requires the
existence of second derivatives (a.e.), and the second derivatives must be
square integrable. The set of all such curves can be given a Hilbert space
structure. The result is the Sobolev space W3 = H?. A given curve may be
parametrized in many ways. In our context each curve is parametrized so
the speed is equal to the length of the curve, the domain is therefore the
interval [0, 1] =: 1. This permits us to introduce an auxiliary function from
which the curve can be recovered by integration. The (a.e.) derivative of the
auxiliary function is required to be square integrable in the sense of
Lebesgue. The corresponding Sobolev space is W= H'=: H. There are
several inner products available. We let ¢ denote the (a.e.) derivative of v,
and choose

Co,w = 0(0) w(0) +j b,

1

because it leads to the least complicated formulas.

2.3. Parametrizations

Note that F is invariant under changes of the parametrization of y. We
like the domain representing the interpolants to have the property that the
nonlinear splines are isolated critical points of F. It is therefore necessary
to further restrict to curves parametrized in a unique way. A common
choice is to parametrize by arclength (see [5]). When curves of variable
length are considered this choice causes the parameter interval to be
variable. The difference between the final parameter and the initial param-
eter is equal to the length, so there is no single function space representing
all variable length interpolants.

A related issue concerns the possibility of allowing the length of the
interpolant to vary between consecutive P,’s. If the total length is fixed, this
corresponds to letting the curve slide at the P,’s. Note that the parameters
corresponding to the nodes are bounded above by the total length. When
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the curve is parametrized by arclength, and the total length is variable,
such a bound causes difficulties. The constraining relationship between the
total length and the parameters associated with the nodes, is not readily
expressed in a form suitable for analysis.

Suppose that y: I — R? is a continuously differentiable curve of length L.
There is a continuous function 6:7— R such that 9(s)= L(cos d(s),
sin 6(s)). Note that 0(s) is the angle between the x-axis and the tangent of
y at the point y(s). If 0 is differentiable then the curvature of y is given by
xk=0/L. In terms of 0 and L the Euler—Bernoulli energy F is proportional
to J(6, L)=(1/2L) y , 0% (one L disappears due to the change of parameter,
and the 3 simplifies formulas).

2.4. The Space of Interpolants

In order to deal with the values of the parameters associated with the
(n>0) nodes, we introduce the space A"={SeR"|IT=(s], . 5,),
0<s,<--- <s,<l}. The length is an element of the positive reals R™".
The space of all sufficiently smooth curves is represented by Hx R* x 4",
If there are no nodes, so n=0, replace Hx R* x A4” by Hx R™*. The space
Hx R" x A" is an open manifold which is almost a vector space. The space
of sufficiently smooth interpolants is a subset of Hx R* x A4”. If more con-
straints are imposed the corresponding subset is smaller. We consider the
following additional constraints: fixing length, pinning, and clamping. To
illustrate we let (6, L, 5) be some element of Hx R™ x A”. To fix the length
means to require L =L for a given L € R*. Similarly, pinning at each node
corresponds to fixing the value of §. If an interpolant is pinned at each
node, then the proportion of lengths between consecutive P;’s is fixed. If,
in addition, the total length is fixed, then these lengths between consecutive
P;’s are also fixed. If an interpolant is not pinned at a node, then the curve
can “slide” at the node. Finally, clamping corresponds to fixing #(0) and
0(1) (or only one of the two), so the tangent directions are given at the
endpoints. Recall from Section 0.1.3 that clamping at the nodes is not
considered.

At each point, the manifold Hx R™ x A" has a tangent space which is
identified with H x Rx R". Let v=(vy, v,, v;) € Hx Rx R", and similarly w,
be tangent vectors. With the use of the standard Euclidean dot product, the
manifold H x R* x A" becomes a Riemannian manifold with inner products

o,w)y =L vg, Woy g+ v, wp+vs-ws

on the tangent spaces. To see that it is necessary to distinguish between
HxR™* xA4" and its tangent spaces, consider a variation of curves of
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decreasing length. The tangent vector associated with the variation must
have a negative length component, and there is no such element in
Hx R* xA". A similar remark can be made regarding 4" and R”".

2.5. Definition of Nonlinear Splines

Consider a constraint represented by a submanifold. At each point the
tangent space of Hx R* x A" splits into a subspace tangent to the sub-
manifold, and its orthogonal complement. A real-valued smooth differen-
tiable functional defined on Hx R* x A" determines a continuous linear
map defined on the tangent space at each point. This linear map is the
derivative. The Riesz representation of the derivative is the gradient. At
each point the gradient is an element of the tangent space H x Rx R".
The derivative meanwhile is an element of the dual. The gradient splits
into a tangential and a normal part. If at some point the tangential part
vanishes, the point is called a critical point. An element in a submanifold,
corresponding to interpolants with possibly additional constraints, is
called a nonlinear spline if the tangential component of the gradient of J
vanishes.

2.6. Examples of Nonexistence

If the length is not fixed there may not be a minimum. Suppose » =0 and
P,=P,=(0,0). Consider circles touching the origin. As the radius
increases the Euler—Bernoulli energy decreases to zero. Since only a straight
line segment has zero energy, there is no minimum. By Theorem 3.1 in
[16], there are no nonlinear splines in this case.

Now change P; to (1,0) and introduce clamping by requiring the
tangent direction to be some given angle at P,. Using the same radius, put
two semicircles and two quarter circles together in two question mark
mirror images. Connect the free ends of the semicircles using a straight line
segment. Draw a straight line segment from P, with the given tangent
direction. The segment is to end at a point, where the corresponding vector
from the origin is perpendicular to the segment. Place one end of the pre-
vious figure at the origin and the other at the end of the last line segment.
Make sure the tangent directions are the same. An arbitrarily large radius
gives an energy arbitrarily close to zero. Again there is no minimum.

More generally, if the tangent directions are given at both P, and P,,
put a circular arc of radius r with the given tangent direction at P,.
Arrange so that the end is parallel to the x-axis and points in the negative
direction. Do the same thing at P,, except arrange so it points in the
positive direction and make sure the radius is at least . Connect as before
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FIGURE 3

using two semi-circles of radius r or more, and a straight line segment; see
Fig. 3. Increasing r decreases the energy to zero.

Note that all the piecewise defined examples are curves in W3. The set
of smooth C* curves is dense in W3. Since F is smooth it follows that
there are smooth curves with arbitrary small energy.

2.7. Ensuring Existence

There are two ways to ensure existence of minimizers: (1) fix the length,
(2) add a positive multiple of the length to F. The nonexistence of
minimizers does not preclude the existence of critical points. In the case of
a constrained tangent direction at P,, there may be a countably infinite
number of critical points, a finite number of critical points, or no critical
points. By varying the tangent direction, examples of each kind can be
exhibited using the functional J, see 1.1.5 in the introduction.

2.8. Smoothness and Constraint Removal

Recall that the interpolants are assumed to be W3, so the second
derivative is only assumed to be in L% In the proof of Theorem 4.1 it is
shown that for any combination of the constraints considered, each non-
linear spline is in fact C2. It is also worth pointing out that, by proving
Theorem 4.1 with all constraints imposed, it is possible to take care of all
cases with fewer constraints. The method can simplistically be summarized
as: “when a constraint is removed, set the corresponding multiplier to zero
and turn the value of the constraint into an unknown.” Note that the
number of equations stays the same and so does the number of unknowns.
The details are given in Section 5.
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3. DERIVATIVES, GRADIENTS, MANIFOLDS AND THE DIFFERENTIAL EQUATION

3.1. Smoothness and Complex Numbers

The Euler—Bernoulli functional is to be considered on the collection of
all sufficiently smooth curves y with given end points P, P, ; which pass,
in order, through given points P, .., P,. Since we are only dealing with
planar curves, it is convenient to interpret the points in R* as complex
numbers and, correspondingly, parametrize the curves in the form

y:[0,1]—- C:sr—>P0+LJ‘ o0 g
0

In these terms, “sufficiently smooth” means that the tangent indicatrix, 6,
of such a curve is in

H:=Wy([0,1]),

the space of all absolutely continuous real functions on [0, 1] with first
derivative in L,. The intent is to restrict attention to those triples

(0,L,5)e HX Rt x A"

for which

P0+Lf0’e”’=P. =1, n+1

VA

(with s4:=0, s,,,:=1). In this way, the domain of the functional J
becomes the set

HxR* xA4"
with tangent spaces

HxRxR"

To simplify the notation, we occasionally write p=(6, L,5)e Hx R* x A"
and v=(vy, v;,v;) € HX RXR".

Recall that a regular curve is a differentiable curve with nonzero speed
everywhere. It is a standard fact that by changing the parametrization any
regular curve can be represented by a curve y: [ — C such that |y(s)| =L,
where L >0 is the length of the curve.
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3.2. The Directional Derivative
We are interested in the following functional

J HxR"xA"— R
given by

— 1 A2
SO, L) =57 L@ :
It has the directional derivative

1 ..
DI(p)v=DI0. L. )ty vy v) = | 00— (p)

in the direction (v,, v,, v;) € Hx Rx R".

3.3. The Gradient

On any Hilbert space X with inner product <, >y, we define the
gradient of a functional F: X — R by

DF(x)v=<{VF(x),v) y

for all x and v in X. Since the tangent space to Hx R* x 4" is a Hilbert
space there is an element VJ(p) such that

DJ(p)v=<VJ(p), v)

for all pin Hx R* x A" and all v in H x R x R". The gradient is given by

VJ(p)=VJ(O, L,5)= <i (0(s)—0(0)), —% J(p), O>.

3.4. Common Types of Interpolants

The ambient space H x R* x A" represents the space of all sufficiently
smooth curves in our application. The interpolants we are interested in are
subsets of Hx R* x 4", As it turns out the common types of interpolants
are represented by closed submanifolds, except for some exceptional cases.
The various subsets are given as level sets of certain smooth maps. If the
derivatives of the maps are surjective, the implicit function theorem is
applicable, and the level sets are closed submanifolds.

The space of interpolants with n nodes corresponds to the intersection of
the zero sets of n + 1 complex-valued functionals. If the curves are pinned at
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the interior nodes, § must be prescribed. If the length is fixed, Le R™ is
given. It is also possible to prescribe the angles at the endpoints (clamping).
There are no doubt many other possibilities, but in this paper we focus on
the cases mentioned and their combinations.

The given constraints are all of the form

A(p)=0,

with each 4 a map into R or into R*> ~ C. For example, in order to enforce
the interpolation conditions, we introduce the n+ 1 complex-valued gap
functionals

A (0, L, f)HLf’ ¢?—(P,—P, ), j=1..n+l

Sji—1

Also, if the curve is to be clamped at ¢, i.e., if 6(¢) is to take a prescribed
value, 6,, for some ¢, we use the functional

Ay, (0, L, 5)—0(t)—0,.

The set over which J is to be restricted is then describable as the inter-
section of sets of the form

Q:=4""0}.

Correspondingly, at a critical point for J, the gradient of J must be normal
to the tangent space of each constraint at that point.

Note that the intersection of two manifolds is not necessarily a manifold,
unless the intersection is transversal. It is one purpose of this paper to show
that, except for certain explicitly identified circumstances, all constraints
have corresponding subsets which are manifolds that intersect transversally
at each point. This requires the construction of the tangent space asso-
ciated with 4 at a point in Q. Note that this space is infinite dimensional.
The constraints we are interested in are such that the orthogonal com-
plement to the tangent space is finite dimensional. To represent elements
of this space we need to compute derivatives and gradients. If the map is
into C, we compute the transpose.

3.5. Angle Functionals

The directional derivative is

DAy, (p)(vgy, vp, v5) =vy(1)
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The gradient is
VA, (p)=(/.0,0)

with f= ([0, ¢]) and f(0)=1. Here y is the characteristic function, with
values one at points in the set, and zero elsewhere. Note that the gradient
is independent of p so, for fixed ¢z, we get a constant vector field on
HxRxR"

The two cases, =0 and ¢ =1, associated with clamping, give the linearly
independent gradients (1,0,0) and (1+s,0,0), respectively. Note that
these are the only values of ¢ where the gradient is smooth. If the nonlinear
splines are to be at least C* smooth, the expressions used in the proof of
Theorem 4.1 cannot contain gradients which are not themselves at least C'.
The only exception occurs when the associated Lagrange multiplier is zero.
However, if the multiplier is zero then the constraint can be removed
altogether. It is for this reason we only consider clamping at the endpoints
and not at the nodes.

3.6. Gap Functionals and Their Directional Derivative
We now compute the directional derivative of each gap functionals. We

use the notation v, =: (v', ..., v").
The directional derivative is

DAj(Qy La *ST)(UOs ULa UE)
S

5 . o , ,
=ULJ e’(’—l—Lv»’e"’””—Lv”'e"’”f*”+1Lf vye”

Sj—1 Sj—1

Sj . . . .
=v, j etH + LU”@IH(S/) _ LU]* ]etﬁ(sj,l)
Sj—1

+iL {v(,(s_,-) f] eiﬂ_fj u',)f eio}.

Sji—1 Sji—1 Sji—1

Let ;=4 ;‘(0) and note the following important fact.

ProrosiTiON 3.1.  If peQ; then DA,(p) is onto.

Note that Q; depends on P; and P; . It is much easier to show DA,(p)
is onto when P; and P, , are distinct. In any case the proof is almost iden-
tical to the proof given in [ 16, Proposition 2.2].

Remark. An application of the implicit function theorem shows that Q;
is a closed submanifold of H x R* x A4”. It is at this stage important that all
of H, R*, and 4 are complete “locally,” so that the contraction mapping
principle applies.
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3.7. The Transpose of the Derivative of the Gap Functionals

We now focus on the spaces normal to tangent spaces 74;. Note that,
as a consequence of Proposition 3.1 and a standard fact in functional
analysis, the normal spaces are given by the image of the transpose of DA,.
It is important to observe that, in our context, the set of complex numbers
is considered as a vector space over R. If z and w are complex numbers
then we use the real inner product <z, w) = Re(zw), where w denotes the
complex conjugate of w.

The transpose of DA; is a map into Hx Rx R", and it has three com-
ponents which simplify as follows when restricted to £;:

(S+1)i(Pj_Pj71)a 0<s<ys;

j—1
*LIY JM i(]+ +1 P P_ o < < )
(DAT(0, L. §)g=4 1, S,,]e (S DAP =Py s <5<y
—sz f +(s,+ 1) i(P,—P,_,), s,<s<I
Sj—1Ysj—1

(DAJ(O, L, 5)),=(P;—P;_,)/L,
(DAT(0, L, 5));= (0, ..., 0, — Le™-1), Le9 0, ..., 0),

Here the nonzero terms appear at the (j— 1)th and jth position (or one of
them not at all when j=1 or j=n+1).

It is straightforward to check that the transpose satisfies the required rela-
tionship determined by the inner product. Note that to get the value of the
transpose at the complex number A, simply take the inner product of the
previous expressions with /4, using the real inner product mentioned earlier.

3.8. Transversality

In the presence of nodes, the space of splines is represented by the inter-
section of the ©)’s. In the case of fixed length, clamping, or pinning, yet
another collectlon of closed submanifolds is created, and their intersections
with the ©’s must be analyzed. To see that the subsets corresponding to
fixed length clamping, and pinning, indeed, are closed submanifolds of
HxR*xA", it sufﬁces to consider the real valued functionals L — L,
0(t)—0,, and s, , and their zero level sets. It is not hard to show that
their d1rect10nal derlvatlves are onto, and, as before, the claim follows
from the implicit function theorem. Each considered constraint thus by
itself corresponds to a closed submanifold. Now we like to give sufficient
conditions to ensure that all the different closed submanifolds intersect
transversally.
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PrOPOSITION 3.2.  Assume that both endpoints are fixed and, possibly,
clamped. Then, each of the following conditions ensures that the corre-
sponding subsets of Hx R* x A" are submanifolds:

1. No interior node is pinned and, either

Ia. the length is variable; or else
Ib. the length is fixed but not all the P, lie on the same straight line.

II. Al interior nodes are pinned and, either

a. the length is variable and no two fractions |P;—P; |/
(§;,—3;_,) are the same; or else

IIb.  the length is fixed and |P;,— P;_|/(§; ) is always different
from the length for any j.

Proof.  First consider case Ia. We show that the ,’s intersect transver-
sally by proving the linear independence of the images under DAT Suppose
ijf DA; ( ;) =0 for arbitrary A;’s. Differentiating twice in the f-compo-
nent of DAJT results in { — zLe’”(” Z;» =0 for all sin (s;_,,s,). It follows
that either 0(s) =0,, a constant on (s $;_1,5;), or 2;=0. From the §-compo-
nent we have the n conditions ¢ Le™), 1.5 = <Le’(’(") A4 1. Combining
this with the previous, we conclude that 1f one of the As are zero, all are
zero. Suppose next that all 4;’s are different from zero. Then O(s)=01s a
constant on all of [0, 1] because by the above we know that it is piecewise
constant, but since 6(s) is also in H it must be continuous. The condition
from the s‘-component then implies that {Le”, 4;) are equal for all j. Since
P,—P, ,=L(s;—s; ,)e", the previous conditions combined with the fact
that Z;’:*l‘ P~ j,l)/L 4;» =0 from the L-component, creates a con-
tradiction to the assumption on the 4;’s. The only possibility left is that
2;=0 for all j.

If other constraints are present, the previous reasoning must be modified.
Clamping results in the addition of u,+u,(1+s) to the f-component.
Taking two derivatives will annihilate this linear term and the argument
above will again show that all the 4;’s equal zero. It right away follows that
o=, =0.

Fixing L or § requires imposing additional restrictions on the P;’s. If the
length is constrained then there is an additional term u in the length com-
ponent. Since everything else stays the same, we again conclude that all 4,s
equal zero, provided not all P;’s are on the same line, because this con-
tradicts the fact that {Le", 1,) are equal for all j. It then follows that u =0
and py,=p, =0 as in the case of clamping.

Fixing § introduces constants ¢, through o, in the n equations associated
with the § component and the previous line of reasoning therefore crum-
bles. We may still, however, assert that the only way we can have nonzero
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Ays is if P;—P; | =L(§;—3, ,)e" for any such j. Taking magnitudes on
both sides will generate the remaining conditions in the proposition. Note
that in the case of variable length it is a priori possible that all but one of
the 4;’s equal zero, but in this case the condition in the length component
gives a contradiction.

Remark. 1t is an open question whether any of these conditions are
necessary. The simplest open case is all curves of fixed length with exactly
one node placed on the line segment between the two endpoints. It is hard
to see why this would not be a manifold but the question is open.

3.9. Jacobi Elliptic Functions

As a preparation for the rest of the paper, we fix the notation and collect
needed facts concerning the Jacobi elliptic functions. We will use sn, cn, dn
as well as the elliptic integrals K and E. The definitions are given by

)=

| =

with an odd continuous periodic extension of sn to all of R. The modulus
p 1s a number in (0, 1). We have

cn(x)?+sn(x)*=1
for any real x, hence cn is even, continuous and cn(0) =1. We also define
dn(x)?+p?sn(x)>=1

with dn even, continuous and dn(0)=1. Integrals of different kinds are
given by

! ds
K=
j0 J1—5*/1—pi?

E(x)= jo dn(u)? du.

We also recall the derivative formulas
sn’(x) =cn(x) dn(x)
cn'(x) = —sn(x) dn(x)
dn'(x) = —p? cn(x) sn(x).
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We need the following antiderivatives:

f cn(x) dx =; sin ~!(p sn(x))

J dn(x) dx = Sign(cn(x)) sin ~'(sn(x)).

3.10. The Differential Equation

The nonlinear splines are characterized by the fact that they are solu-
tions of the differential equation about to be given. As it turns out later,
each interval (s; ,,s;) will be associated with its own boundary value
problem. The purpose of the following proposition is to specify exactly
which functions can appear as solutions to the boundary value problem.
Note that in the special case ¢ =0 all solutions are given by cn.

ProrosiTiON 3.3.  Given any real numbers ¢,, ¢, and c the unique
solution of the initial value problem,

»(s)’

#(s)+ 7

+cp(s)=0,  9B)=0o,  @)=¢,

is given by either

I o(s)=Acn(a(s—3)+f) of modulus pe[0, 1] with A cn(f) = ¢@,,
—Aasn(B) dn(B) = ¢y, and A =4p*x>, c=ao*(1 —2p?), or
I ¢(s)=Adn(a(s—3)+ f) of modulus pe [0, 1] with A dn(f) = ¢,,
—Aop? sn(f) en(f) = ¢, and A* =402, ¢ =o*(p? —2).

If (4c+ @3) 0o +4¢2=0 then the solution is given by case 1; otherwise the
solution is given by case 1.

Remark. Tt follows that if ¢,=0 or 4c+ ¢g>0 then the solution is
given by case I, otherwise the solution is given either by case I or by case
II. This fact is used in Theorem 4.1, because there this last inequality can
be expressed solely in terms of multipliers and the given data.

Proof. The case ¢ =0 with p> =1 is taken care of in [ 16], so we assume
that ¢#0. It may be verified, using the derivative formulas, that the
suggested solutions indeed solve the initial value problem as long as the
corresponding four relations are satisfied. Now we must show that given
arbitrary ¢,, ¢,, and c¢#0 the constants 4, «, f and the modulus
p€[0,1] can be chosen so that the above conditions are satisfied.
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First square —Aasn(f)dn(f)=¢, and —Aap*sn(pB)cn(f)=p,,
respectively, and use suitable identities for the elliptic functions, together
with the remaining three conditions in each case to eliminate all but the
modulus. We get two functions F(p?)=f(p?)/4(1 —2p*)? and G(p?)=
g(p?)/4(p*—2)°, where

f(p?)=4p°c—p3(1—2p))(4e(1 —p*) + @3(1 —2p?))
g(p*) =(4c—@3(p> = 2))(@g(p> —2) —4c(1 —p?)).

Note that f(0)=f(1)= —¢@J(4c+@3) and f(3)=4c> Also observe that
F(p?) is symmetric about p?=1. When ¢ >0 we have p*> <1 and when ¢ <0
we have p?> 1. Given p? the relations used between the constants may be
used to first find a, then 4, and finally f. Since the initial value problem
has a unique solution it follows that there can only be at the most one
solution to F(p?)=¢g and G(p*)=¢;. If 9, =0 we see that F is onto the
nonnegative reals because it is singular at p>=1. If ¢, #0 but 4c + ¢ >0
then F(0)=F(1) is negative so again F takes on all nonnegative values.
Next suppose that ¢, #0 and 4c + ¢g <0. Since F(p?) is smooth and 1-1
on (4, 17, its minimum must be at p>=1. Note that G(0) <0 and G(1)=
F(1)= —(c+@3/4) pg so it follows that the two types of solutions together
account for all possible values ¢,. The inequality in the Proposition is
essentially the statement F(1) < ¢g. Once the modulus is determined simply
retrace the steps and determine the values of the constants eliminated
above.

Remark. In what follows the boundary values are not given explicitly
but rather in terms of the multipliers. It follows that both types of solutions
may occur in the spline. In terms of computational efficiency this is unfor-
tunate since in the worst case one would have to examine all 2"*!
possibilities.

4. THE FUNDAMENTAL EQUATION AND ALL CONSTRAINTS IMPOSED

In this section we consider the case of curves of fixed length which are
not allowed to slide at the nodes (if any). No sliding is allowed at the
endpoints, and if the directions are given at the endpoints there will be two
multipliers present (u, and u,), along with two extra conditions. Without
such clamping simply set the two multipliers equal to zero and drop the
two extra conditions.

If the curves considered are periodic, so that the two endpoints are the
same and the directions at the endpoints are identical, then we have
o+ ;=0 and only one extra condition.
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In between the nodes the curve is given by either one of a pair of Jacobi
elliptic functions and two sets of parameters «, and f;. Both the
“amplitudes” 4;, and the moduli p; are related to the a,;’s. All these quan-
tities are tied together with the complex multipliers 4, real multipliers o,
i, and in the case of clamping also with x, and ;. The following theorem
gives necessary and sufficient conditions for these parameters and multi-
pliers so that the corresponding curves are splines satisfying all the con-
straints. It is assumed that s,=0 and s,,,=1. Conditions for when the
constraints result in subsets of H x R* x 4" which are closed submanifolds
are given in Proposition 3.2. To simplify many of the expressions we intro-
duce n+1 complex numbers by g; :=P,— P, ;.

THEOREM 4.1.  Given n+2 points Py, .., P, ,, and a fixed L>0 and a
fixed §=(§,, ..., §,,) € A". Assume these data are such that the corresponding
constrained set is a submanifold of Hx R™ x A". In the case of clamping also
assume that the two real numbers 0, and 0, are given. Let g;:=P,—P,_,.
The element (0,L,5)e HXR*Y xA" such that Lj‘/ 1 ’O—g for

j=1,.,n+1, with sz and §=35 (and 0(0)=0,, 0(1)=0, zfclampmg)
is a critical point of the functional J(0,L,5)= 1/2L 50 2ds when
reslricted to the constrained set if and only if 0,=0|;_, 5, satisfies

=A;fi(;(s=3;_1)+ B;), with the function f; one (i) or possibly the

other (11) of the Jacobz elliptic functions cn (1) or dn (i1). We have (1) for sure
if, with C;= ﬂL+Zk:, (1=384) 0 =242 510

Jj—1 ) 2 4C,
<ﬂ0+ Z <lgksik>> 271

k=1

or o+ Y70 igy, Ay =0; otherwise we may have case (ii).
In each case (1), the modulus and the “amplitude” are given by

1 Lc;
1’»?:2<1+ oc?j>

4pa
In each case (ii), we have
Lc,
pjz =2-— 2J
%;
A?=4a?
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We let q;=p; in case (i) and q;=1 in case (ii). The parameters o;, f8;, the
elliptic moduli p;, together with the complex multipliers A; and the real multi-
pliers u, and p,, are required to satisfy

n+1

L) gl 14 sin(arg(g;) —arg(4)) =po +p

j=1

Tla. ioc,ijf,(ﬁj)=i{ﬂo+2 <ig/(=/1k>}

k=1

b, +a,2q,f,(0(5,—3, 1)+ f;)= {ﬂo+z<zgm>}

Mla. olp?=1L%7 |4

IIb.  +2sin~'(g,;sn(a,(5,—3§, )+ p,) +arg(4)
=+2sin" (g, sn(f;. 1)) +arg(4; )

Ilc. +2sin~'(q, sn(f,)) +arg(4,) =0,

NId.  +2sin" (g, sn(a, (1 =5,)+B,1)) +arg(L, 1) =0,

V(). 2L{E(y(8,— 5,0+ B) — BB} —a,L(5,-5, 1)
=a;|g;| cos(arg(g;) —arg(4)))

V(). 2L{E(oy(5— 5,0+ B) — B} +a,L(p7 —2)(5, =5, 1)
=a,p; |g,| cos(arg(g,) — arg(4;)).

Remark 1. Note that there are 2(n + 1) unknown parameters o; and §;.
The moduli p; correspond to another 7+ 1 unknown. The complex multi-
pliers 4; yet another 2(n+ 1) unknowns. Including the real multipliers s,
and u,, we get a total of 5(n+ 1) + 2 unknowns. The number of equations
is given by: I=1, [I=2(n+1), [lla=(n+1), llIb=n, IV=(n+1), which
with Illc, 111d add up to 5(n+1)+2.

Remark 2. Equations I-1V and the equations for the p ’s is the “funda-
mental finite-dimensional equation” we referred to in Sectlon 0.2.6.

It is also worth pointing out separately the following basic fact which is
shown in the proof of the theorem.
COROLLARY 4.2. If (0, L,5)e Hx R™ x A" is critical subject to the con-

straints, then 0 is continuous.

It follows that a nonlinear spline of the above kind, when regarded as a
curve in the plane, is at least C>.
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Proof. 1In order for (0, L,5) to be critical, the gradient vector field
associated with J, when projected onto the tangent space of the sub-
manifold corresponding to the constraints, must vanish. When this is
expressed explicitly, we get three kinds of conditions, one for each compo-
nent in the tangent space of HxR* xA". Assume that p=(0, L, §)e
Hx R x A" is critical and that it satisfies the constraints

Z ¥ ei(}z ) 1
LH g (1)
and possibly also
0(0) =0, (2)
0(1)=0,. (3)

The element (0, L, §) € H x R* x A" being critical subject to the constraints
is equivalent to the existence of complex numbers 4;, and real numbers o,
U, Wy, and u, such that

1
Z(H(S)—Q(O))‘f‘ﬂo‘f‘#l(s‘f‘ 1)
< S+1)lg/3/hj> 0<S<~j719
ntl zf (s+1)ig-,/1->, §._,<s<5§,
= Z < §j-1 9 I Y : 74
<lf —(§+1)ig;, i_,->, §,<s<1,
$i—1 Y81
n+1 -
Z <gja /1j>:J(p)_/JL (5)
j=1
(L™, 3y —(Le™, 7, 1> +0,=0. (6)
Next we use these equations to deduce necessary conditions.
If we let s=0 in (4) we get
n+1
o+ =— 3, <ig; 4. (7)

Jj=1

When (7) is spelled out we get L.
Note that the right-hand side of (4) is differentiable and it follows that
a critical 0 must be differentiable.
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Differentiating gives us

C—igys 40, 0<s<3; 4,
1 3 n+1 -
z@(s)-‘,—pll: z <l'Lj e’”—igj, ‘>s 51 <s<§, (8)
Jj=1 S-1
0, §<s<1

Observe that (8) and (1) show that a critical # must have @ continuous,
which proves Corollary 4.2.

Also note that by a standard bootstrap argument 8 must be C* on each
interval (§,_,,35,). On any such interval the right-hand side is C', which
forces the left-hand side to be C? but then the right-hand side is C* and
so on and so forth.

Let 0, denote the restriction of 0 to this interval. If we differentiate we get

%.

zi CiLe, 2. (9)

Since H, is an integrating factor we can integrate to get
0
2

<o

=(Le", 2y + C;. (10)

]

If we combine (10) for all j and integrate from 0 to 1 and (5), (1) are used,
we see that /! C,(5,—3,_,) =uL.
The conditions (6) show that C;,—C;,,=0;, so, with the previous
equation, we have n+ 1 linear equations for the C)’s in terms of the g;’s.
The solutions are given by C; =ul+3_ S (1=35,) 0y -3/ S0,

Differentiating (9) and comblmng with (10) gives us

—LC,0,(s)=0. (11)

According to Proposition 3.3 in Section 3.10, all the solutions of (11) have
the form:

0,(s) = A; £ (o, (s =5, 1) + B)), (12)
where f; is either cn if 63, ,)>>4LC; or 6(3; ) =0, or possibly dn in the

other case.
The “amplitudes” are in each case given by

A2 =4p’2, A2 =da. (13)
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The moduli in the respective cases are given by
—LC,=03(1—2p?), —LC;=03(p}—2). (14)

Using (7) and (8) we extract the values

0(s) = ll{uo-+ § <zgk,zk} (15)

and we have (n+ 1) boundary value problems, one for each 0,.

When (13) and (14) are expressed at both endpoints of (5, ,, §;) for each
j we get the conditions II.

Recalling from 3.9 the formula for the antiderivatives of cn, dn and using
(12) we get

0,(s)=+2sin"'(¢g;sn(o;(s—5,_,)+ )+ D, (16)

where ¢,=p; in case of cn and ¢;=1 in case of dn. To be precise, the sign
of cn should also enter into (16) in case (ii) when dn is used. The same sign
will appear as a consequence of taking a square root of a square below.
Instead of dealing with both the sign function and an absolute value we
permit ourselves to be sloppy and leave out both. The cancellation will
take place but this point did at one time confuse the author. The
antiderivative formula in 3.9 is typically not stated with the sign of cn as
we have indicated in 3.9.

To simplify the display of some of the following equations we let x :=
(a(s =51+ B) and y = (2(5,— 5, 1) + ).

With the use of algebra and elliptic identities the two cases give us

e = (dn(x)*—p; sn(x)* +i2p;sn(x) dn(x)) e (17a)
e% = (cn(x)? —sn(x)*+i2 sn(x) en(x)) e?’. (17b)

If (12) is differentiated and (9) is rewritten using (17a), (17b) we get an
1dent1ty Wthh can only be satisfied for all se(S;_,,§)) if D;=arg(4,) and
a./p./ =44, |j’/|

To see this, it is convenient to argue under two different circumstances.
First suppose that there is an s e (5,_,, §,) at which sn vanishes. At such an
s we must have (iLe™, Z;» =0. Using thlS fact for all s (5, ,, §;) the con-
clusion follows.

In the contrary case, sn vanishes nowhere in (3;_,, j) In case (i) we can
divide by 2p; sn(x) dn(x) and use the fact that cn(x )? and 2p; sn(x) dn(x)
are linearly independent to again deduce that {iLe™, 4;» =0, so again the
conclusion follows.
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In case (ii) we first dispose of when for some s we have cn(x) =0 in the
same way as previously. In the remaining circumstances we can divide by
2 sn(x) cn(x), and use linear independence the same way as before. This
gives us IIla and the continuity of @ give us IIIb in the theorem. In the case
of clamping we get Illc, I11d.

The constraints (1) are responsible for the conditions IV which result
from an integration of (17a), (17b) over se(§;_, §;). Note that the second
term appearing in (17a), (17b) can be integrated explicitly. The resulting
term can be rewritten with the help of II and Illa so that we have

1851 jitare) —arezn

:f dn(x)2— p? sn(x)? ds ——— {ig;, 4, (18a)
Sj—1 L|’1,/'|
@ ei(‘drg(g/) —arg(4)))
i
= cn(x)? —sn(x)? ds — = g, A 18b
J, ento—sn(x)? ds — o gy (18b)

J

The imaginary parts of both sides of the equations are seen to be equal.
The real parts must also be equal. Using an elliptic identity the integral
term can be rewritten in terms of a standard elliptic integral, and IV
follows. This concludes the proof that I-1V all are necessary conditions.

In order to prove sufficiency we assume that there are parameters o«;, f3;,
together with multipliers 4;, o;, i, and possibly u,, 4, satisfying I-IV of the
theorem. Next we define 0 in terms of «;, f8; by

0,(s) = £2sin~'(g, sn(x)) + arg(4)). (19)

J

First we observe that 0 is well defined because if (19) is differentiated Ila,
IIb imply that € is continuous.
Next we show that the constraints are satisfied. The definition of 0, yields

"= (dn(x)>—p7 sn(x)* +i2p, sn(x) dn(x)) e’ > (20a)
il — (CH(X)2 _ sn(x)2 +i2 sn(x) en(x)) el ars(z) (20b)

If (20a), (20b) is integrated over (§;_,, 3;) and IV is used we see that (1)
is satisfied. In the case of clamping Illc, IIId imply (2) and (3).
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Before we prove criticality, we state a crucial relationship between the
moduli p;, the multipliers 4;, ¢;, x, and the length L:

C; 2 C;
(i) 2pi=1+=~ (i) =14+—=—L. (21)
’ Lyl ;o LIyl
With the use of (21) we get

02
J

YA (L|) | + C;) en(x)? (22a)
02

2—% (L |2;] + C;) dn(x)>. (22b)

Using elliptic identities we also get
dn(x)?—p? sn(x)?>=2p% cn(x)* + (1 —2p?)

<1 ~|C; |>cn(x)2 Cf (23a)

:<1 ZC,- >dn(x)2— < ) (23b)

In order to prove criticality we must show (4)—(6), and we begin with
(6). With the help of (20a), (20b) we get

(e, 7,5 =12;] (dn(y)® —p7? sn(y)?) (242)

e, 4> =14, (en()* = sn(y)?) (24b)
e, 7y > = 12| (dn(y 1) —p} sn(By, 1)) (252)
e, Gy = Vgl (on( By 1) —sn(.)°). (25b)

Using (24a), (24b), 1Ia, IIb, and IIla we sece that the right-hand sides of
(24a), (24b) and (25a), (25b) are equal so (6) follows.
Next we prove (5). If J is expressed in terms of f; we have

1 n+1

J(p) j Sx)? ds (26)
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Combining (26) with (22a), (22b) we see that we get an expression which
can be rewritten using (23a), (23b) backwards so that if the real part of
(19a), (19b) is used backwards (5) follows. Note that (18a), (18b) are a
consequence of the constraint (1).

It is straightforward to show (9) which when antidifferentiated gives us

9../(5)_9../‘(~11):<”:fs o) /1_>.
i i - > Ly

The (n+ 1) subintervals can now be combined and with the help of (7)
(which really is I) we get (8). Another antidifferentiation and one more
application of (7) shows (4). This concludes the proof of the theorem.

5. NoT ALL CONSTRAINTS IMPOSED

The remarks preceding Theorem 4.1 regarding clamping and periodicity
apply everywhere in this section. Note that in all the cases below we again
have that 0 is continuous.

5.1. Pinned but with Variable Length

Consider the case of curves of variable length which are not allowed to
slide at the interior nodes (if any). Theorem 4.1 and its proof must be
modified in the following way. Replace L by L everywhere and let x =0
everywhere. Note in this case that there are 2(n + 1) parameters «; and f,.
The elliptic moduli p, correspond to 7 + 1 unknowns and the complex mul-
tipliers 4, yet another 2(n 4+ 1). There are n real multipliers ¢; and two real
mul‘uphers o and u,. With the length L we get a total of 6(n+1)+2
unknowns. As in the remark following Theorem 4.1 we have 5(n+1)+2
equations and in this case we also include the # + 1 equations for the pf for
a total of 6(n+ 1)+ 2.

5.2. Fixed Length but No Pinning

Consider the case of curves of fixed length which are allowed to slide at
the interior nodes (if any). Theorem 4.1 and its proof must be modified in
the following way. Replace § by § everywhere and let ;=0 everywhere.
Note that C; =ulL for all j’s. It follows that the 1nequal1ty changes to
(uo+ 27214 <zgk,Ak>) >4u so if u <0 only the cn is present along the
spline.

Note that there are 2(n+1) unknown parameters o; and f;. The §
corresponds to 7 unknown and the elliptic moduli p; another n+ 1. There
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are 2(n+ 1) unknown due to the complex multipliers 4, With the real mul-
tipliers u, py, and x, we get a total of 6(n+ 1)+ 2. This is equal to the
number of equations since as in 5.1 we include the n+ 1 equations for
the p’.

5.3. Variable Length and No Pinning

Consider the case of curves of variable length which are allowed to slide
at the interior nodes (if any). Theorem 4.1 and its proof must be modified
in the following way. Replace L by L and § by § everywhere. Let £ =0 and
let 6,=0 everywhere. Note that C,=0 for all ;’s. This implies that p; =3
for all j’s and only the cn function is needed.

This last case is clearly the simplest, but remember that the existence of
critical points is not guaranteed when the length is variable.

5.4. Variable Length, No Interior Nodes and Clamping at One Endpoint

This last section illustrates how Theorem 4.1 is used to deal with the
special case discussed in Section 1.1.5. Since there are no interior nodes we
let n =0 and consider curves between P,=(0,0) and P, =(1, 0). Variable
length implies that u =0. No clamping at P, implies that u,=0. As in 5.3
we need only consider cn functions of modulus p>=1. In Eq.1la the
summation index varies over an empty set so i, = 0. This implies cn( ) =0.
We choose f=—K When Egs.l and IIb are combined we get
+./20 cn(e— K) = L |4 sin(arg(2)). Equation Illa becomes o= L> ||
and IIId, +2 sinfl(l/ﬁ sn(a — K)) + arg(1) =0,. Both IIIb and Illc are
without content. Finally, Eq.IV becomes 2L(E(x—K)— E(K))—oalL =
o cos(arg(4)).

All the unknown but a can be eliminated. To see how, divide the sin
equation by the cos equation. Next replace the coefficient in front of tan
using IIla and note how || drops out. Finally, use IIId to replace arg(4).
When this final equation is rewritten with everything but 0, to the left of
the equal sign, the left side is equal to /[ x] in Fig. 1. Once a is determined
all other quantities, such as the length, the value of the functional and the
curve itself, can be computed explicitly; see Fig. 2.

As an example consider the length formula. Use the sin equation, get rid
of || and arg(4) using I11a and IIId, and solve for L. A similar computa-
tion yields a second formula for the length. It is used in case the
denominator of the first formula is zero. Once the length is determined the
value of the functional can be found by integrating 0> To get the curve
itself, integrate 0 first and then ¢”. The constants of integration have values
so the constraints are satisfied.
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